Part Number Hot Search : 
RDX4B A0512 170M2621 170M2621 DM16216 AK5388A LPBA30L 2N5401C
Product Description
Full Text Search
 

To Download LTC2351CUH-12 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 ltc2351-12 235112f 6 channel, 12-bit, 1.5msps simultaneous sampling adc with shutdown the ltc ? 2351-12 is a 12-bit, 1.5msps adc with six simultaneously sampled differential inputs. the device draws only 5.5ma from a single 3v supply, and comes in a tiny 32-pin (5mm 5mm) qfn package. a sleep shutdown mode further reduces power consumption to 12 w. the combination of low power and tiny package makes the ltc2351-12 suitable for portable applications. the ltc2351-12 contains six separate differential inputs that are sampled simultaneously on the rising edge of the conv signal. these six sampled inputs are then converted at a rate of 250ksps per channel. the 83db common mode rejection allows users to eliminate ground loops and common mode noise by measuring signals differentially from the source. the device converts 0v to 2.5v unipolar inputs differen- tially, or 1.25v bipolar inputs also differentially, depending on the state of the bip pin. any analog input may swing rail-to-rail as long as the differential input range is maintained. the conversion sequence can be abbreviated to convert fewer than six channels, depending on the logic state of the sel2, sel1 and sel0 inputs. the serial interface sends out the six conversion results in 96 clocks for compatibility with standard serial interfaces. 1.5msps adc with 6 simultaneously sampled differential inputs 250ksps throughput per channel 72db sinad low power dissipation: 16.5mw 3v single supply operation 2.5v internal bandgap reference, can be overdriven with external reference 3-wire spi-compatible serial interface internal conversion triggered by conv sleep (12 w) shutdown mode nap (4.5mw) shutdown mode 0v to 2.5v unipolar, or 1.25v bipolar differential input range 83db common mode rejection tiny 32-pin (5mm 5mm) qfn package multiphase power measurement multiphase motor control data acquisition systems uninterruptable power supplies applicatio s u features descriptio u block diagra w C + 4 5 25 24 C + 7 6 9 12 13 16 19 8 ch0 C ch0 + ch1 C ch1 + 10 11 C + 14 15 ch2 C ch2 + ch3 C ch3 + C + 17 18 C + 20 21 s and h s and h s and h s and h s and h ch4 C ch4 + ch5 C ch5 + mux v ref 10 f bip sel2 sel1 sel0 gnd 2.5v reference 1.5msps 12-bit adc 12-bit latch 5 12-bit latch 4 12-bit latch 3 12-bit latch 2 12-bit latch 1 12-bit latch 0 10 f3v v cc v dd 26 29 23 22 33 27 28 2 1 sd0 0.1 f 3 ov dd 3v 32 sck 31 dgnd ognd 30 conv three- state serial output port timing logic 235112 ta01 C + s and h , lt, ltc and ltm are registered trademarks of linear technology corporation. all other trademarks are the property of their respective owners. protected by u.s. patents including 6084440, 6522187.
2 ltc2351-12 235112f a u g w a w u w a r b s o lu t exi t i s (notes 1, 2) supply voltage (v dd , v cc , ov dd ) .............................. 4v analog and v ref input voltages (note 3) ................................... C 0.3v to (v dd + 0.3v) digital input voltages .................. C 0.3v to (v dd + 0.3v) digital output voltage .................. C 0.3v to (v dd + 0.3v) power dissipation .............................................. 100mw operation temperature range ltc2351c-12 .......................................... 0 c to 70 c ltc2351i-12 ...................................... C 40 c to 85 c storage temperature range ................. C 65 c to 125 c parameter conditions min typ max units resolution (no missing codes) 12 bits integral linearity error (note 5) C1 0.25 1 lsb offset error (note 4) C4.5 1 4.5 mv offset match from ch0 to ch5 C3 0.5 3 mv range error (note 4) C12 212 mv range match from ch0 to ch5 C5 15 mv range tempco internal reference (note 4) 15 ppm/ c external reference 1 ppm/ c the denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t a = 25 c. with internal reference, v dd = v cc = 3v. symbol parameter conditions min typ max units v in analog differential input range (notes 3, 8, 9) 2.7v v dd 3.6v, unipolar 0 to 2.5 v 2.7v v dd 3.6v, bipolar 1.25 v v cm analog common mode + differential 0 to v dd v input range (note 8) i in analog input leakage current 1 a c in analog input capacitance 13 pf t acq sample-and-hold acquisition time (note 6) 39 ns t ap sample-and-hold aperture delay time 1 ns t jitter sample-and-hold aperture delay time jitter 0.3 ps t sk channel to channel aperture skew 200 ps cmrr analog input common mode rejection ratio f in = 100khz, v in = 0v to 3v C83 db f in = 10mhz, v in = 0v to 3v C67 db co verter characteristics u a alog i put u u wu u package / o rder i for atio order part number qfn part marking t jmax = 125 c, ja = 34 c/ w exposed pin is gnd (pad 33) must be soldered to pcb consult ltc marketing for parts specified with wider operating temperature ranges. 16 15 14 13 12 11 10 9 25 26 27 28 top view qfn package 32-pin (5mm 5mm) plastic qfn 29 30 31 32 1 2 3 4 5 6 7 8 24 23 22 21 20 19 18 17 ch4 + ch4 gnd ch5 + ch5 gnd v ref v cc ch1 ch1 + gnd ch0 ch0 + ov dd ognd sdo gnd ch3 ch3 + gnd gnd ch2 ch2 + gnd v dd sel2 sel1 sel0 bip conv dgnd sck 33 LTC2351CUH-12 ltc2351iuh-12 235112 order options tape and reel: add #tr lead free: add #pbf lead free tape and reel: add #trpbf lead free part marking: http://www.linear.com/leadfree/ the denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t a = 25 c. with internal reference, v dd = v cc = 3v.
3 ltc2351-12 235112f i ter al refere ce characteristics uu u the denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t a = 25 c. with internal reference, v dd = v cc = 3v. symbol parameter conditions min typ max units sinad signal-to-noise plus 100khz input signal 69 72 db distortion ratio 300khz input signal 71 db thd total harmonic 100khz first 5 harmonics C80 C90 db distortion 300khz first 5 harmonics C85 db sfdr spurious free 100khz input signal 90 db dynamic range 300khz input signal 85 db imd intermodulation 0.625v p-p , 833khz into ch0+, 0.625v p-p , 841khz into ch0C C80 db distortion bipolar mode. also applicable to other channels code-to-code v ref = 2.5v (note 17) 0.2 lsb rms transition noise full power bandwidth v in = 2.5v p-p , sdo = 11585lsb p-p (C3dbfs) (note 15) 50 mhz full linear bandwidth s/(n + d) 68db, bipolar differential input 5 mhz t a = 25 c. v dd = v cc = 3v. parameter conditions min typ max units v ref output voltage i out = 0 2.5 v v ref output tempco 15 ppm/ c v ref line regulation v dd = 2.7v to 3.6v, v ref = 2.5v 600 v/v v ref output resistance load current = 0.5ma 0.2 ? v ref settling time ext c ref = 10 f2ms external v ref input range 2.55 v dd v the denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t a = 25 c. v dd = v cc = 3v. symbol parameter conditions min typ max units v ih high level input voltage v dd = 3.3v 2.4 v v il low level input voltage v dd = 2.7v 0.6 v i in digital input current v in = 0v to v dd 10 a c in digital input capacitance 5pf v oh high level output voltage v dd = 3v, i out = C 200 a 2.5 2.9 v v ol low level output voltage v dd = 2.7v, i out = 160 a 0.05 v v dd = 2.7v, i out = 1.6ma 0.4 v i oz hi-z output leakage d out v out = 0v and v dd 10 a c oz hi-z output capacitance d out 1pf i source output short-circuit source current v out = 0v, v dd = 3v 20 ma i sink output short-circuit sink current v out = v dd = 3v 15 ma dy a ic accuracy u w digital i puts a d digital outputs u u
4 ltc2351-12 235112f symbol parameter conditions min typ max units f sample(max) maximum sampling frequency per channel 250 khz (conversion rate) t throughput minimum sampling period (conversion + acquisiton period) 4 s t sck clock period (note 16) 40 10000 ns t conv conversion time (notes 6, 17) 96 sclk cycles t 1 minimum high or low sclk pulse width (note 6) 2 ns t 2 conv to sck setup time (notes 6, 10) 3 10000 ns t 3 sck before conv (note 6) 0 ns t 4 minimum high or low conv pulse width (note 6) 4 ns t 5 sck to sample mode (note 6) 4 ns t 6 conv to hold mode (notes 6, 11) 1.2 ns t 7 96th sck to conv interval (affects acquisition period) (notes 6, 7, 13) 45 ns t 8 minimum delay from sck to valid bits 0 through 11 (notes 6, 12) 8 ns t 9 sck to hi-z at sdo (notes 6, 12) 6 ns t 10 previous sdo bit remains valid after sck (notes 6, 12) 2 ns t 11 v ref settling time after sleep-to-wake transition (notes 6, 14) 2 ms the denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t a = 25 c. with internal reference, v dd = v cc = 3v. symbol parameter conditions min typ max units v dd , v cc supply voltage 2.7 3.0 3.6 v i dd + i cc supply current active mode, f sample = 1.5msps 5.5 8 ma nap mode 1.5 2 ma sleep mode 4.0 15 a pd power dissipation active mode with sck, f sample = 1.5msps 16.5 mw power require e ts w u the denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t a = 25 c. v dd = 3v. ti i g characteristics u w note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliabilty and lifetime. note 2: all voltage values are with respect to ground gnd. note 3: when these pins are taken below gnd or above v dd , they will be clamped by internal diodes. this product can handle input currents greater than 100ma below gnd or greater than v dd without latchup. note 4: offset and range specifications apply for a single-ended ch0 + C ch5 + input with ch0 C C ch5 C grounded and using the internal 2.5v reference. note 5: integral linearity is tested with an external 2.55v reference and is defined as the deviation of a code from the straight line passing through the actual endpoints of a transfer curve. the deviation is measured from the center of quantization band. linearity is tested for ch0 only. note 6: guaranteed by design, not subject to test. note 7: recommended operating conditions. note 8: the analog input range is defined for the voltage difference between chx + and chx C , x = 0C5. note 9: the absolute voltage at chx + and chx C must be within this range. note 10: if less than 3ns is allowed, the output data will appear one clock cycle later. it is best for conv to rise half a clock before sck, when running the clock at rated speed. note 11: not the same as aperture delay. aperture delay (1ns) is the difference between the 2.2ns delay through the sample-and-hold and the 1.2ns conv to hold mode delay. note 12: the rising edge of sck is guaranteed to catch the data coming out into a storage latch. note 13: the time period for acquiring the input signal is started by the 96th rising clock and it is ended by the rising edge of conv. note 14: the internal reference settles in 2ms after it wakes up from sleep mode with one or more cycles at sck and a 10 f capacitive load. note 15: the full power bandwidth is the frequency where the output code swing drops by 3db with a 2.5v p-p input sine wave. note 16: maximum clock period guarantees analog performance during conversion. output data can be read with an arbitrarily long clock period. note 17: the conversion process takes 16 clocks for each channel that is enabled, up to 96 clocks for all 6 channels.
5 ltc2351-12 235112f v dd = 3v, t a = 25 c typical perfor a ce characteristics uw sinad vs input frequency sfdr vs input frequency thd, 2nd and 3rd vs input frequency thd, 2nd and 3rd vs input frequency frequency (mhz) 53 62 59 56 74 71 68 65 235112 g01 sinad (db) 0.1 10 1 2nd frequency (mhz) 0.1 ?10 thd, 2nd, 3rd (db) ?8 ?6 ?4 ?2 110 235112 g02 ?0 ?04 ?2 ?0 ?8 ?6 unipolar single-ended thd 3rd frequency (mhz) 50 68 62 56 92 86 80 74 235112 g04 sfdr (db) 0.1 10 1 snr vs input frequency frequency (mhz) 0.1 snr (db) 53 59 56 62 65 68 71 110 235112 g05 74 differential linearity vs output code, unipolar mode 100khz unipolar sine wave 8192 point fft plot integral linearity vs output code, unipolar mode frequency (khz) 0 magnitude (db) ?0 0 50 100 125 235112 g06 ?00 ?0 ?20 ?10 ?0 ?0 ?0 ?0 ?0 ?0 ?0 25 75 100khz bipolar sine wave 8192 point fft plot frequency (khz) 0 magnitude (db) ?0 ?0 ?0 ? 50 100 125 235112 g07 ?00 ?0 ?0 ?20 ?10 ?0 ?0 ?0 ?0 25 75 output code 0 ? differential linearity (lsb) ?.8 ?.4 ?.2 0 1 0.4 1024 2048 2560 235112 g08 ?.6 0.6 0.8 0.2 512 1536 3072 3584 4096 output code 0 ? integral linearity (lsb) ?.8 ?.4 ?.2 0 1 0.4 1024 2048 2560 235112 g09 ?.6 0.6 0.8 0.2 512 1536 3072 3584 4096 frequency (mhz) 0.1 ?16 thd, 2nd, 3rd (db) ?04 ?2 ?0 ?8 110 235112 g03 ?0 ?00 ?8 ?6 ?4 ?2 ?6 bipolar single-ended thd 3rd 2nd
6 ltc2351-12 235112f full scale signal response cmrr vs frequency crosstalk vs frequency psrr vs frequency 235112 g12 frequency (hz) ?00 crosstalk (db) ?0 ?0 ?0 ?0 0 10k 100k 1m 10m 100m 1g ?20 100 1k 235112 g13 frequency (hz) C100 psrr (db) C60 C20 C40 C80 0 10k 100k 1m 10m 100m 1g C120 100 1k frequency (mhz) ?4 ?7 magnitude (db) ?1 ?2 ?5 ?8 ? ? ? 0 3 100 1000 235112 g10 ?0 10 235112 g11 frequency (hz) ?00 cmrr (db) ?0 ?0 ?0 ?0 0 10k 100k 1m 10m 100m 1g ?20 100 1k v dd = 3v, t a = 25 c typical perfor a ce characteristics uw
7 ltc2351-12 235112f uu u pi fu ctio s sdo (pin 1): three-state serial data output. each set of six output data words represent the six analog input channels at the start of the previous conversion. data for ch0 comes out first and data for ch5 comes out last. each data word comes out msb first. ognd (pin 2): ground return for sdo currents. connect to the solid ground plane. ov dd (pin 3): power supply for the sdo pin. ov dd must be no more than 300mv higher than v dd and can be brought to a lower voltage to interface to low voltage logic families. the unloaded high state at sdo is at the potential of ov dd . ch0 + (pin 4): non-inverting channel 0. ch0 + operates fully differentially with respect to ch0 C with a 0v to 2.5v, or 1.25v differential swing and a 0v to v dd absolute input range. ch0 (pin 5): inverting channel 0. ch0 C operates fully differentially with respect to ch0 + with a C2.5v to 0v, or 1.25v differential swing and a 0v to v dd absolute input range. gnd (pins 6, 9, 12, 13, 16, 19): analog grounds. these ground pins must be tied directly to the solid ground plane under the part. analog signal currents flow through these connections. ch1 + (pin 7): non-inverting channel 1. ch1 + operates fully differentially with respect to ch1 C with a 0v to 2.5v, or 1.25v differential swing and a 0v to v dd absolute input range. ch1 (pin 8): inverting channel 1. ch1 C operates fully differentially with respect to ch1 + with a C2.5v to 0v, or 1.25v differential swing and a 0v to v dd absolute input range. ch2 + (pin 10): non-inverting channel 2. ch2 + operates fully differentially with respect to ch2 C with a 0v to 2.5v, or 1.25v differential swing and a 0v to v dd absolute input range. ch2 (pin 11): inverting channel 2. ch2 C operates fully differentially with respect to ch2 + with a C2.5v to 0v, or 1.25v differential swing and a 0v to v dd absolute input range. ch3 + (pin 14): non-inverting channel 3. ch3 + operates fully differentially with respect to ch3 C with a 0v to 2.5v, or 1.25v differential swing and a 0v to v dd absolute input range. ch3 (pin 15): inverting channel 3. ch3 C operates fully differentially with respect to ch3 + with a C2.5v to 0v, or 1.25v differential swing and a 0v to v dd absolute input range. ch4 + (pin 17): non-inverting channel 4. ch4 + operates fully differentially with respect to ch4 C with a 0v to 2.5v, or 1.25v differential swing and a 0v to v dd absolute input range. ch4 (pin 18): inverting channel 4. ch4 C operates fully differentially with respect to ch4 + with a C2.5v to 0v, or 1.25v differential swing and a 0v to v dd absolute input range. ch5 + (pin 20): non-inverting channel 5. ch5 + operates fully differentially with respect to ch5 C with a 0v to 2.5v, or 1.25v differential swing and a 0v to v dd absolute input range. ch5 (pin 21): inverting channel 5. ch5 C operates fully differentially with respect to ch5 + with a C2.5v to 0v, or 1.25v differential swing and a 0v to v dd absolute input range. gnd (pin 22): analog ground for reference. analog ground must be tied directly to the solid ground plane under the part. analog signal currents flow through this connection. the 10 f reference bypass capacitor should be returned to this pad. v ref (pin 23): 2.5v internal reference. bypass to gnd and a solid analog ground plane with a 10 f ceramic capacitor (or 10 f tantalum in parallel with 0.1 f ce- ramic). can be overdriven by an external reference voltage between 2.55v and v dd , v cc . v cc (pin 24): 3v positive analog supply. this pin supplies 3v to the analog section. bypass to the solid analog ground plane with a 10 f ceramic capacitor (or 10 f tantalum) in parallel with 0.1 f ceramic. care should be taken to place the 0.1 f bypass capacitor as close to pin 24 as possible. pin 24 must be tied to pin 25.
8 ltc2351-12 235112f v dd (pin 25): 3v positive digital supply. this pin supplies 3v to the logic section. bypass to dgnd pin and solid analog ground plane with a 10 f ceramic capacitor (or 10 f tantalum in parallel with 0.1 f ceramic). keep in mind that internal digital output signal currents flow through this pin. care should be taken to place the 0.1 f bypass capacitor as close to pin 25 as possible. pin 25 must be tied to pin 24. sel2 (pin 26): most significant bit controlling the number of channels being converted. in combination with sel1 and sel0, 000 selects just the first channel (ch0) for conversion. incrementing selx selects additional channels(ch0Cch5) for conversion. 101, 110 or 111 select all 6 channels for conversion. must be kept in a fixed state during conversion and during the subsequent con- version to read data. sel1 (pin 27): middle significance bit controlling the number of channels being converted. in combination with sel0 and sel2, 000 selects just the first channel (ch0) for conversion. incrementing selx selects additional channels for conversion. 101, 110 or 111 select all 6 channels (ch0Cch5) for conversion. must be kept in a fixed state during conversion and during the subsequent conversion to read data. sel0 (pin 28): least significant bit controlling the number of channels being converted. in combination with sel1 and sel2, 000 selects just the first channel (ch0) for conversion. incrementing selx selects additional channels for conversion. 101, 110 or 111 select all 6 channels (ch0Cch5) for conversion. must be kept in a fixed state during conversion and during the subsequent conversion to read data. uu u pi fu ctio s bip (pin 29): bipolar/unipolar mode. the input differen- tial range is 0v C 2.5v when bip is low, and it is 1.25v when bip is high. must be kept in fixed state during conversion and during subsequent conversion to read data. when changing bip between conversions the full acquisition time must be allowed before starting the next conversion. the output data is in 2s complement format for bipolar mode and straight binary format for unipolar mode. conv (pin 30): convert start. holds the six analog input signals and starts the conversion on the rising edge. two conv pulses with sck in fixed high or fixed low state starts nap mode. four or more conv pulses with sck in fixed high or fixed low state starts sleep mode. dgnd (pin 31): digital ground. this ground pin must be tied directly to the solid ground plane. digital input signal currents flow through this pin. sck (pin 32): external clock input. advances the conver- sion process and sequences the output data at sd0 (pin1) on the rising edge. one or more sck pulses wake from sleep or nap power saving modes. 16 clock cycles are needed for each of the channels that are activated by selx (pins 26, 27, 28), up to a total of 96 clock cycles needed to convert and read out all 6 channels. exposed pad (pin 33): gnd. must be tied directly to the solid ground plane.
9 ltc2351-12 235112f block diagra w 2 ognd 1 sd0 3 ov dd 3v C + 4 5 24 23 s & h C + 7 6 9 12 13 16 19 8 s & h exposed pad gnd v ref 10 f ch0 C ch0 + ch1 C ch1 + C + 10 11 s & h C + 14 15 s & h ch2 C ch2 + ch3 C ch3 + C + 17 18 s & h C + 20 21 s & h ch4 C ch4 + ch5 C ch5 + 10 f 0.1 f dgnd 32 sck 30 conv sel2 sel1 sel0 three- state serial output port mux 2.5v reference timing logic v cc 25 3v v dd 235112 bd 1.5msps 12-bit adc 12-bit latch 5 12-bit latch 4 12-bit latch 3 12-bit latch 2 12-bit latch 1 12-bit latch 0 26 27 bip 29 28 31 22 33 0.1 f
10 ltc2351-12 235112f ltc2351-12 timing diagram ti i g diagra s w u w sck conv internal s/h status sdo t 3 t 1 1 98 97 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 20 22 23 24 25 26 27 28 29 30 31 32 33 t 2 t 6 t 8 t 10 t 9 t 8 t 4 sample hold hi-z hi-z sdo represents the analog input from the previous conversion at ch1 d11 d10 d8 d7 d6 d5 d4 d3 d2 d1 d0 x x d9 d11 d10 d8 d7 d6 d5 d4 d3 d2 d1 d0 x x d9 94 95 96 back to back to sample mode if selx = 000 sdo represents the analog input from the previous conversion at ch0 t conv 12-bit data word 12-bit data word t throughput to sample mode if selx = 001 34 35 38 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 58 57 59 60 61 62 63 64 65 sdo represents the analog input from the previous conversion at ch2 d11 d10 d8 d7 d6 d5 d4 d3 d2 d1 d0 x x d9 sdo represents the analog input from the previous conversion at ch3 d11 d10 d8 d7 d6 d5 d4 d3 d2 d1 d0 x x d9 back to sample mode if selx = 010 t conv 12-bit data word 12-bit data word t throughput 1408 td01 66 67 68 69 70 71 72 75 74 73 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95 94 96 97 98 1 2 3 4 5 6 sdo represents the analog input from the previous conversion at ch4 d11 d10 d8 d7 d6 d5 d4 d3 d2 d1 d0 x x d9 sdo represents the analog input from the previous conversion at ch5 sample hi-z d11 d10 d8 d7 d6 d5 d4 d3 d2 d1 d0 x x d9 d11 back to sample mode if selx = 011 back to sample mode if selx = 100 t 8 t 6 t 4 t 6 t 8 t conv 12-bit data word 12-bit data word t throughput d10 d9 d8
11 ltc2351-12 235112f nap mode and sleep mode waveforms sck to sdo delay t 8 t 10 sck sdo 1408 td03 v ih v oh v ol t 9 sck sdo hi-z v ih sck conv nap sleep v ref t 1 t 11 t 1 note: nap and sleep are internal signals 1408 td02 ti i g diagra s w u w
12 ltc2351-12 235112f applicatio s i for atio wu uu selecting the number of converted channels (sel2, sel1, sel0) these three control pins select the number of channels being converted. 000 selects only the first channel (ch0) for conversion. incrementing selx selects additional chan- nels for conversion, up to 6 channels. 101, 110 or 111 select all 6 channels for conversion. these pins must be kept in a fixed state during conversion and during the subsequent conversion to read data. when changing modes between conversions, keep in mind that the output data of a particular channel will remain unchanged until after that channel is converted again. for example: convert a sequence of 4 channels (ch0, ch1, ch2, ch3) with selx = 011, then, after these channels are converted change selx to 001 to convert just ch0 and ch1. see table 1. during the conversion of the first set of two channels you will be able to read the data from the same two channels converted as part of the previous group of 4 channels. later, you could convert 4 or more channels to read back the unread ch2 and ch3 data that was converted in the first set of 4 channels. these pins are often hardwired to enable the right number of channels for a particular application. choosing to convert fewer chan- nels per conversion results in faster throughput of those channels. for example, 6 channels can be converted at 250ksps/ch, while 3 channels can be converted at 500ksps/ch. bipolar/unipolar mode the input voltage range for each of the chx input differen- tial pairs is unipolar 0v C 2.5v when bip is low, and bipolar 1.25v when bip is high. this pin must be kept in fixed state during conversion and during subsequent conversion to read data. when changing bip between conversions the full acquisition time must be allowed before starting the next conversion. after changing modes from bipolar to unipolar, or from unipolar to bipolar, you can still read the first set of channels in the new mode, by inverting the msb to read these channels in the mode that they were converted in. driving the analog input the differential analog inputs of the ltc2351-12 may be driven differentially or as a single-ended input (i.e., the ch0 C input is grounded). all twelve analog inputs of all six differential analog input pairs, ch0 + and ch0 C , ch1 + and ch1 C , ch2 + and ch2 C , ch3 + and ch3 C , ch4 + and ch4 C and ch5 + and ch5 C , are sampled at the same instant. any unwanted signal that is common to both inputs of each input pair will be reduced by the common mode rejection of the sample-and-hold circuit. the inputs draw only one small current spike while charging the sample-and-hold capacitors at the end of conversion. during conversion, the analog inputs draw only a small leakage current. if the table 1. conversion sequence control (?cquire?represents simultaneous sampling of all channels; chx represents conversion of channels) sel2 sel1 sel0 channel acquisition and conversion sequence 0 0 0 acquire, ch0, acquire, ch0... 0 0 1 acquire, ch0, ch1, acquire, ch0, ch1... 0 1 0 acquire, ch0, ch1, ch2, acquire, ch0, ch1, ch2... 0 1 1 acquire, ch0, ch1, ch2, ch3, acquire, ch0, ch1, ch2, ch3... 1 0 0 acquire, ch0, ch1, ch2, ch3, ch4, acquire, ch0,ch1,ch2, ch3, ch4... 1 0 1 acquire, ch0, ch1, ch2, ch3, ch4, ch5, acquire, ch0, ch1, ch2, ch3, ch4, ch5... 1 1 0 acquire, ch0, ch1, ch2, ch3, ch4, ch5, acquire, ch0, ch1, ch2, ch3, ch4, ch5... 1 1 1 acquire, ch0, ch1, ch2, ch3, ch4, ch5, acquire, ch0, ch1, ch2, ch3, ch4, ch5...
13 ltc2351-12 235112f ltc1566-1: low noise 2.3mhz continuous time lowpass filter. lt 1630: dual 30mhz rail-to-rail voltage fb amplifier. 2.7v to 15v supplies. very high a vol , 500 v offset and 520ns settling to 0.5lsb for a 4v swing. thd and noise are C 93db to 40khz and below 1lsb to 320khz (a v = 1, 2v p-p into 1k ? , v s = 5v), making the part excellent for ac applications (to 1/3 nyquist) where rail-to-rail perfor- mance is desired. quad version is available as lt1631. lt1632: dual 45mhz rail-to-rail voltage fb amplifier. 2.7v to 15v supplies. very high a vol , 1.5mv offset and 400ns settling to 0.5lsb for a 4v swing. it is suitable for applications with a single 5v supply. thd and noise are C 93db to 40khz and below 1lsb to 800khz (a v = 1, 2v p-p into 1k ? , v s = 5v), making the part excellent for ac applications where rail-to-rail performance is desired. quad version is available as lt1633. lt1801: 80mhz gbwp, C75dbc at 500khz, 2ma/ampli- fier, 8.5nv/ hz. lt1806/lt1807: 325mhz gbwp, C80dbc distortion at 5mhz, unity gain stable, rail-to-rail in and out, 10ma/amplifier, 3.5nv/ hz. lt1810: 180mhz gbwp, C90dbc distortion at 5mhz, unity gain stable, rail-to-rail in and out, 15ma/amplifier, 16nv/ hz. lt1818/lt1819: 400mhz, 2500v/ s, 9ma, single/dual voltage mode operational amplifier. lt6200: 165mhz gbwp, C85dbc distortion at 1mhz, unity gain stable, rail-to-rail in and out, 15ma/amplifier, 0.95nv/ hz. lt6203: 100mhz gbwp, C80dbc distortion at 1mhz, unity gain stable, rail-to-rail in and out, 3ma/amplifier, 1.9nv/ hz. lt6600: amplifier/filter differential in/out with 10mhz cutoff frequency. source impedance of the driving circuit is low, then the ltc2351-12 inputs can be driven directly. as source impedance increases, so will acquisition time. for mini- mum acquisition time with high source impedance, a buffer amplifier must be used. the main requirement is that the amplifier driving the analog input(s) must settle after the small current spike before the next conversion starts (the time allowed for settling must be at least 39ns for full throughput rate). also keep in mind while choosing an input amplifier the amount of noise and harmonic distortion added by the amplifier. choosing an input amplifier choosing an input amplifier is easy if a few requirements are taken into consideration. first, to limit the magnitude of the voltage spike seen by the amplifier from charging the sampling capacitor, choose an amplifier that has a low output impedance (< 100 ? ) at the closed-loop bandwidth frequency. for example, if an amplifier is used in a gain of 1 and has a unity-gain bandwidth of 50mhz, then the output impedance at 50mhz must be less than 100 ? . the second requirement is that the closed-loop bandwidth must be greater than 40mhz to ensure adequate small- signal settling for full throughput rate. if slower op amps are used, more time for settling can be provided by increasing the time between conversions. the best choice for an op amp to drive the ltc2351-12 depends on the application. generally, applications fall into two catego- ries: ac applications where dynamic specifications are most critical and time domain applications where dc accuracy and settling time are most critical. the following list is a summary of the op amps that are suitable for driving the ltc2351-12. (more detailed information is available in the linear technology databooks and on the website at www.linear.com.) applicatio s i for atio wu uu linearview is a trademark of linear technology corporation.
14 ltc2351-12 235112f applicatio s i for atio wu uu input filtering and source impedance the noise and the distortion of the input amplifier and other circuitry must be considered since they will add to the ltc2351-12 noise and distortion. the small-signal bandwidth of the sample-and-hold circuit is 50mhz. any noise or distortion products that are present at the analog inputs will be summed over this entire bandwidth. noisy input circuitry should be filtered prior to the analog inputs. a simple 1-pole rc filter is sufficient for many applica- tions. for example, figure 1 shows a 47pf capacitor from cho + to ground and a 51 ? source resistor to limit the net input bandwidth to 30mhz. the 47pf capacitor also acts as a charge reservoir for the input sample-and-hold and isolates the adc input from sampling-glitch sensitive cir- cuitry. high quality capacitors and resistors should be used since these components can add distortion. npo and silvermica type dielectric capacitors have excellent linear- ity. carbon surface mount resistors can generate distor- tion from self heating and from damage that may occur during soldering. metal film surface mount resistors are much less susceptible to both problems. when high amplitude unwanted signals are close in frequency to the desired signal frequency a multiple pole filter is required. high external source resistance, combined with 13pf of input capacitance, will reduce the rated 50mhz input band- width and increase acquisition time beyond 39ns. input range the analog inputs of the ltc2351-12 may be driven fully differentially with a single supply. either input may swing up to v cc , provided the differential swing is no greater than 2.5v with bip (pin 29) low, or 1.25v with (bip pin 29) high. the 0v to 2.5v range is also ideally suited for single- ended input use with single supply applications. the common mode range of the inputs extend from ground to the supply voltage v cc . if the difference between the ch + and ch C at any input pair exceeds 2.5v (unipolar) or 1.25v (bipolar), the output code will stay fixed at positive full- scale, and if this difference goes below 0v (unipolar) or C1.25v (bipolar), the output code will stay fixed at negative full-scale. internal reference the ltc2351-12 has an on-chip, temperature compen- sated, bandgap reference that is factory trimmed to 2.5v to obtain a precise 2.5v input span. the reference ampli- fier output v ref , (pin 23) must be bypassed with a capaci- tor to ground. the reference amplifier is stable with capaci- tors of 1 f or greater. for the best noise performance, a 10 f ceramic or a 10 f tantalum in parallel with a 0.1 f ceramic is recommended. the v ref pin can be overdriven with an external reference as shown in figure 2. the volt- age of the external reference must be higher than the 2.5v of the open-drain p-channel output of the internal refer- ence. the recommended range for an external reference is 2.55v to v dd . an external reference at 2.55v will see a dc quiescent load of 0.75ma and as much as 3ma during conversion. figure 1. rc input filter ltc2351-12 ch0 + ch0 v ref gnd 235112 f01 1 2 11 3 10 f 47pf* 51 ? * ch1 + ch1 4 5 47pf* *tight tolerance required to avoid aperture skew degradation 51 ? * analog input analog input figure 2. overdriving v ref pin with an external reference ltc2351-12 v ref gnd 235112 f02 23 22 10 f lt1790-3 3.5v to 18v
15 ltc2351-12 235112f applicatio s i for atio wu uu figure 4 shows the ideal input/output characteristics for the ltc2351-12 in unipolar mode (bip = low). the code transitions occur midway between successive integer lsb values (i.e., 0.5lsb, 1.5lsb, 2.5lsb, fs C 1.5lsb). the output code is straight binary with 1lsb = 2.5v/4096 = 610 v for the ltc2351-12. the ltc2351-12 has 0.2 lsb rms of gaussian white noise. input span versus reference voltage the differential input range has a unipolar voltage span that equals the difference between the voltage at the reference buffer output v ref (pin 23) and the voltage at ground. the differential input range of the adc is 0v to 2.5v when using the internal reference. the internal adc is referenced to these two nodes. this relationship also holds true with an external reference. differential inputs the adc will always convert the difference of ch + minus ch C , independent of the common mode voltage at any pair of inputs. the common mode rejection holds up at high frequencies (see figure 3.) the only requirement is that both inputs not go below ground or exceed v dd . figure 3. cmrr vs frequency 235112 g20 frequency (hz) C100 cmrr (db) C60 C20 C40 C80 0 10k 100k 1m 10m 100m 1g C120 100 1k integral nonlinearity errors (inl) and differential nonlin- earity errors (dnl) are largely independent of the common mode voltage. however, the offset error will vary. dc cmrr is typically better than C90db. figure 5 shows the ideal input/output characteristics for the ltc2351-12 in bipolar mode (bip = high). the code transitions occur midway between successive integer lsb values (i.e., 0.5lsb, 1.5lsb, 2.5lsb, fs C 1.5lsb). the output code is 2s complement with 1lsb = 2.5v/4096 = 610 v for the ltc2351-12. the ltc2351-12 has 0.2 lsb rms of gaussian white noise. figure 5. ltc2351-12 transfer characteristic in bipolar mode (bip = high) input voltage (v) 2's complement output code 235112 f05 011...111 011...110 011...101 100...000 100...001 100...010 fs ?1lsb ?s figure 4. ltc2351-12 transfer characteristic in unipolar mode (bip = low) input voltage (v) straight binary output code 235112 f04 111...111 111...110 111...101 000...000 000...001 000...010 fs ?1lsb 0
16 ltc2351-12 235112f applicatio s i for atio wu uu power-down modes upon power-up, the ltc2351-12 is initialized to the active state and is ready for conversion. the nap and sleep mode waveforms show the power down modes for the ltc2351-12. the sck and conv inputs control the power down modes (see timing diagrams). two rising edges at conv, without any intervening rising edges at sck, put the ltc2351-12 in nap mode and the power consumption drops from 16.5mw to 4.5mw. the internal reference remains powered in nap mode. one or more rising edges at sck wake up the ltc2351-12 very quickly and conv can start an accurate conversion within a clock cycle. four rising edges at conv, without any intervening rising edges at sck, put the ltc2351-12 in sleep mode and the power consumption drops from 16.5mw to 12 w. one or more rising edges at sck wake up the ltc2351-12 for operation. the internal reference (v ref ) takes 2ms to slew and settle with a 10 f load. using sleep mode more frequently compromises the accuracy of the output data. note that for slower conversion rates, the nap and sleep modes can be used for substantial reductions in power consumption. digital interface the ltc2351-12 has a 3-wire spi (serial peripheral inter- face) interface. the sck and conv inputs and sdo output implement this interface. the sck and conv inputs accept swings from 3v logic and are ttl compatible, if the logic swing does not exceed v dd . a detailed description of the three serial port signals follows: conversion start input (conv) the rising edge of conv starts a conversion, but subse- quent rising edges at conv are ignored by the ltc2351-12 until the following 96 sck rising edges have occurred. the duty cycle of conv can be arbitrarily chosen to be used as a frame sync signal for the processor serial port. a simple approach to generate conv is to create a pulse that is one sck wide to drive the ltc2351-12 and then buffer this signal to drive the frame sync input of the processor serial port. it is good practice to drive the ltc2351-12 conv input first to avoid digital noise interference during the sample-to-hold transition triggered by conv at the start of conversion. it is also good practice to keep the width of the low portion of the conv signal greater than 15ns to avoid introducing glitches in the front end of the adc just before the sample-and-hold goes into hold mode at the rising edge of conv. minimizing jitter on the conv input in high speed applications where high amplitude sine waves above 100khz are sampled, the conv signal must have as little jitter as possible (10ps or less). the square wave output of a common crystal clock module usually meets this requirement. the challenge is to generate a conv signal from this crystal clock without jitter corrup- tion from other digital circuits in the system. a clock divider and any gates in the signal path from the crystal clock to the conv input should not share the same integrated circuit with other parts of the system. the sck and conv inputs should be driven first, with digital buffers
17 ltc2351-12 235112f applicatio s i for atio wu uu used to drive the serial port interface. also note that the master clock in the dsp may already be corrupted with jitter, even if it comes directly from the dsp crystal. another problem with high speed processor clocks is that they often use a low cost, low speed crystal (i.e., 10mhz) to generate a fast, but jittery, phase-locked-loop system clock (i.e., 40mhz). the jitter in these pll-generated high speed clocks can be several nanoseconds. note that if you choose to use the frame sync signal generated by the dsp port, this signal will have the same jitter of the dsps master clock. the typical application figure on page 20 shows a circuit for level-shifting and squaring the output from an rf signal generator or other low-jitter source. a single d-type flip flop is used to generate the conv signal to the ltc2351-12. re-timing the master clock signal eliminates clock jitter introduced by the controlling device (dsp, fpga, etc.) both the inverter and flip flop must be treated as analog components and should be powered from a clean analog supply. serial clock input (sck) the rising edge of sck advances the conversion process and also udpates each bit in the sdo data stream. after conv rises, the third rising edge of sck sends out up to six sets of 12 data bits, with the msb sent first. a simple approach is to generate sck to drive the ltc2351-12 first and then buffer this signal with the appropriate number of inverters to drive the serial clock input of the processor serial port. use the falling edge of the clock to latch data from the serial data output (sdo) into your processor serial port. the 12-bit serial data will be received in six 16-bit words with 96 or more clocks per frame sync. if fewer than 6 channels are selected by sel0Csel2 for conversion, then 16 clocks are needed per channel to convert the analog inputs and read out the resulting data after the next convert pulse. it is good practice to drive the ltc2351-12 sck input first to avoid digital noise interfer- ence during the internal bit comparison decision by the internal high speed comparator. unlike the conv input, the sck input is not sensitive to jitter because the input signal is already sampled and held constant. serial data output (sdo) upon power-up, the sdo output is automatically reset to the high impedance state. the sdo output remains in high impedance until a new conversion is started. sdo sends out up to six sets of 12 bits in the output data stream after the third rising edge of sck after the start of conversion with the rising edge of conv. the six or fewer 12-bit words are separated by two dont care bits and two clock cycles in high impedance mode. please note the delay specification from sck to a valid sdo. sdo is always guaranteed to be valid by the next rising edge of sck. the 16 C 96-bit output data stream is compatible with the 16-bit or 32-bit serial port of most processors. board layout and bypassing wire wrap boards are not recommended for high resolu- tion and/or high speed a/d converters. to obtain the best performance from the ltc2351-12, a printed circuit board with ground plane is required. layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. in particular, care should be taken not to run any digital track alongside an analog signal track. if optimum phase match between the inputs is desired, the length of the twelve input wires of the six input channels should be kept matched. but each pair of input wires to the six input channels should be kept separated by a ground trace to avoid high frequency crosstalk between channels.
18 ltc2351-12 235112f applicatio s i for atio wu uu high quality tantalum and ceramic bypass capacitors should be used at the v cc , v dd and v ref pins as shown in the block diagram on the first page of this data sheet. for optimum performance, a 10 f surface mount tantalum capacitor with a 0.1 f ceramic is recommended for the v cc , v dd and v ref pins. alternatively, 10 f ceramic chip capacitors such as x5r or x7r may be used. the capaci- tors must be located as close to the pins as possible. the traces connecting the pins and the bypass capacitors must be kept short and should be made as wide as possible. the v cc and v dd bypass capacitor returns to the ground plane and the v ref bypass capacitor returns to the pin 22. care should be taken to place the 0.1 f v cc and v dd bypass capacitor as close to pins 24 and 25 as possible. figure 6 shows the recommended system ground connec- tions. all analog circuitry grounds should be terminated at the ltc2351-12 exposed pad. the ground return from the ltc2351-12 to the power supply should be low imped- ance for noise-free operation. the exposed pad of the 32- pin qfn package is also internally tied to the ground pads. the exposed pad should be soldered on the pc board to reduce ground connection inductance. all ground pins (gnd, dgnd, ognd) must be connected directly to the same ground plane under the ltc2351-12. hardware interface to tms320c54x the ltc2351-12 is a serial output adc whose interface has been designed for high speed buffered serial ports in fast digital signal processors (dsps). figure 7 shows an example of this interface using a tms320c54x. the buffered serial port in the tms320c54x has direct access to a 2kb segment of memory. the adcs serial data can be collected in two alternating 1kb segments, in real time, at the full 1.5msps conversion rate of the ltc2351-12. the dsp assembly code sets frame sync mode at the bfsr pin to accept an external positive going pulse and the serial clock at the bclkr pin to accept an external positive edge clock. buffers near the ltc2351-12 may be added to drive long tracks to the dsp to prevent corruption of the signal to ltc2351-12. this configura- tion is adequate to traverse a typical system board, but source resistors at the buffer outputs and termination resistors at the dsp, may be needed to match the charac- teristic impedance of very long transmission lines. if you need to terminate the sdo transmission line, buffer it first with one or two 74acxx gates. the ttl threshold inputs of the dsp port respond properly to the 3v swing used with the ltc2351-12. figure 6. recommended layout v dd bypass, 0.1 f, 0402 ov dd bypass, 0.1 f, 0402 v ref bypass, 10 f, 0805 v cc bypass, 0.1 f, 0402 and 10 f, 0805 235112 f06 3 30 32 1 2 3-wire serial interface link ov dd conv sck ltc2351-12 sdo v cc bfsr bclkr tms320c54x bdr ognd 31 dgnd conv 0v to 3v logic swing clk 5v 3v b11 b10 figure 7. dsp serial interface to tms320c54x
19 ltc2351-12 235112f u package descriptio information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights. uh package 32-lead plastic qfn (5mm 5mm) (reference ltc dwg # 05-08-169) 5.00 0.10 (4 sides) note: 1. drawing proposed to be a jedec package outline m0-220 variation whhd-(x) (to be approved) 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.20mm on any side 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on the top and bottom of package pin 1 top mark (note 6) 0.40 0.10 31 1 2 32 bottom viewexposed pad 3.50 ref (4-sides) 3.45 0.10 3.45 0.10 0.75 0.05 r = 0.115 typ 0.25 0.05 (uh32) qfn 0406 rev d 0.50 bsc 0.200 ref 0.00 C 0.05 0.70 0.05 3.50 ref (4 sides) 4.10 0.05 5.50 0.05 0.25 0.05 package outline 0.50 bsc recommended solder pad layout apply solder mask to areas that are not soldered pin 1 notch r = 0.30 typ or 0.35 45 chamfer r = 0.05 typ 3.45 0.05 3.45 0.05
20 ltc2351-12 235112f part number description comments adcs ltc1402 12-bit, 2.2msps serial adc 5v or 5v supply, 4.096v or 2.5v span ltc1403/ltc1403a 12-/14-bit, 2.8msps serial adc 3v, 15mw, unipolar inputs, msop package ltc1403-1/ltc1403a-1 12-/14-bit, 2.8msps serial adc 3v, 15mw, bipolar inputs, msop package ltc1405 12-bit, 5msps parallel adc 5v, selectable spans, 115mw ltc1407/ltc1407a 12-/14-bit, 3msps simultaneous sampling adc 3v, 14mw, 2-channel unipolar input range ltc1407-1/ltc1407a-1 12-/14-bit, 3msps simultaneous sampling adc 3v, 14mw, 2-channel bipolar input range ltc1411 14-bit, 2.5msps parallel adc 5v, selectable spans, 80db sinad ltc1412 12-bit, 3msps parallel adc 5v supply, 2.5v span, 72db sinad ltc1420 12-bit, 10msps parallel adc 5v, selectable spans, 72db sinad ltc1608 16-bit, 500ksps parallel adc 5v supply, 2.5v span, 90db sinad ltc1609 16-bit, 250ksps serial adc 5v configurable bipolar/unipolar inputs ltc1864/ltc1865 16-bit, 250ksps 1-/2-channel serial adcs 5v or 3v (l-version), micropower, msop package ltc1864l/ltc1865l dacs ltc1592 16-bit, serial softspan tm i out dac 1lsb inl/dnl, software selectable spans ltc1666/ltc1667 12-/14-/16-bit, 50msps dac 87db sfdr, 20ns settling time ltc1668 references lt1460-2.5 micropower series voltage reference 0.10% initial accuracy, 10ppm drift lt1461-2.5 precision voltage reference 0.04% initial accuracy, 3ppm drift lt1790-2.5 micropower series reference in sot-23 0.05% initial accuracy, 10ppm drift softspan is a trademark of linear technology corporation. related parts ? linear technology corporation 2006 lt/lwi 0207 ? printed in the usa linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax: (408) 434-0507 www.linear.com u typical applicatio low-jitter clock timing with rf sine generator using clock squaring/level shifting circuit and re-timing flip-flop pre v cc 1k 1k 50 ? v cc nl17sz74 convert enable nc7svu04p5x master clock 0.1 f conv 2351-12 control logic (fpga, cpld, dsp, etc.) dq q clr 1408 ta02


▲Up To Search▲   

 
Price & Availability of LTC2351CUH-12

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X